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ON GROUPING FOR MAXIMUM HOMOGENEITY*

Warter D. FISHER
Kansas State College

Given a set of arbitrary numbers, what is a practical procedure for
grouping them so that the variance within groups is minimized? An
answer to this question, including a description of an automatic com-
puter program, is given for problems up to the gize where 200 numbers
are to be placed in 10 groups. Two basic types of problem are discussed
and illustrated.

1. INTRODUCTION

TATISTICIANS are often interested in defining homogeneous groups. Measures
S of precision of point estimates partly depend on homogeneity within strata
from which samples are taken. Tests of significant differences are based on
comparisons that also involve such homogeneity within strata, as well as dif-
" ferences between them. Apart from sampling or inference problems, it is often
important to know how a population may be decomposed into sub-groups that
contrast sharply with each other, individuals of the same group being fairly
alike.

This paper deals with the following problem from the viewpoint of statistical
description: given a set of K elements, each element having assigned to it a
weight, w;, and a numerical measure, a;, and given a positive integer G that is
less than K; to find a systematic and practical procedure for grouping the K
elements into G mutually exclusive and exhaustive subsets such that the
weighted sum of squares

K
D = Z wi(a; — @:)° (1)
il
is minimized, where @; denotes the weighted arithmetic mean of those a's that
are assigned to the subset to which element 7 is assigned. This problem will be
called a grouping problem.! The D value, well known as the sum of squares
within groups in the sense of the analysis of variance, will here be called
squared distance. A system of grouping is often called a partition, and a partition
. associated with the minimum squared distance D will be called a least squares
partition.

Two subclasses of the grouping problem are distinguished: (1) the unre-
stricted problem, where no restrictions or side conditions are imposed on the
partitions allowed; and (2) the restricted problem, where such conditions are im-
posed a prior: on the basis of previous knowledge, theory, or for convenience.
The relevance of each type of problem will be illustrated by an example from

* This paper ie the result of work supported by the Social Science Research Council and by the Bureau of
General Research of Kansas State College; also by the courtesies extended to the author by the University of Illinois
when he visited there during the summer of 1956. The author gratefully acknowledges the helpful suggestiors he
received from W. A. Neiswanger, Kern Dickman, and D. B. Gillies of the University of Illinois; from J. I. Northam,
now with the Upjohn Company; and from Henry Tucker, now of the University of Arizona.

1 An equivalent geometric problem is: given K weighted points on a straight line, to group the points into G
Eroups so that sum of squared distancea of the individual points from their group centers of gravity is minimiged.
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the literature, and computational methods for handling the simpler types of
problem will be presented.

An analogous problem for the case of a continuous frequency distribution has
been investigated by Dalenius [3], [5] and Dalenius and Gurney [4]. The
special case of the normal distribution has been considered in a recent note by
Cox [2]. The methods suggested by these writers are useful in the discrete prob-
lem considered here when the number of individuals is large, when their dis-
tribution can be approximated by a fairly simple continuous curve, when the
number of groups G is fairly small—say five or less—and when no side condi-
tions are put on the admissible partitions. Otherwise, the approach of the
present paper is believed to be preferred.

The position taken here that the w; and a; are given and known with complete
certainty entails a descriptive or non-stochastic approach; yet this approach
leads to sampling and other stochastic applications. It is moreover assumed
without attempt at justification here that the measure of homogeneity used,
D, formed by adding squared deviations, is useful and relevant to many prac-
tical problems.?

2. THE UNRESTRICTED PROBLEM

The unrestricted problem may be easily understood by considering a familiar
situation. Assume that it is desired to find the best method of choosing a given
number of strata for proportional-stratified sampling when information is
available regarding the relevant variable in the population.? In their discussion
of stratified sampling Hansen, Hurwitz and Madow [8] present a problem with
data on income levels of Atlanta families, based on a previous study by Men-
dershausen [9]. A frequency distribution of these families, grouped into ten
income classes, is shown in Tig. 791. The problem is to combine the ten classes
into three larger strata so that the estimate of mean income for all families,
based on a stratified sample, has a small variance.* Various strata and various
methods of sampling are suggested. Here attention will be confined to the
various possible combinations of the original classes into strata, assuming
proportional allocation of sample numbers between the three strata and ran-
dom sampling within each stratum. It is also assumed that the sample mean is
taken as the estimate of the overall population mean. It has been shown, and
is well known, that under these conditions, if w; denotes the weight of income
class ¢ in the population, a; denotes the mean income of income class 4, and &
denotes the mean income of the stratum to which income class ¢ is assigned,
then the variance of the estimate is proportional to D as given by equation (1)
plus a constant representing the variance within the original classes. To mini-
mize the variance of the estimate it is sufficient to minimize D, which repre-

t Savage has given a general theoretical argument in support of the squared error criterion for statistical de-
cision and estimation problems [10, Ch, 15]. In a previous article [6] the present writer deduced the squared error
criterion from & specific economic decision problem, in which uncertainty was also introduced.

1 Strictly speaking, the problem to be discussed is based upon the assumption that the stratification variable i8
identical with the variable to be estimated. The stratification method is useful, without this assumption, when an
a priori stratification variable can be found that is highly correlated with the varizble to be estimated.

& See {8], Exercise 17.2 to 17.5 inclusive. In our Figure 791 two of the original eleven groups having nearly the
same mean have been combined for graphic convenience, the combination beingimmaterial to the present problem.
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sents the variance of the ten income class means within the three strata. If we
replace “income class” by the word “element,” the original grouping problem of
the paper has been restated.

The solution to this problem—not obvious from a visual inspection of Fig.
791—happens to be the following one. Numbering the original ten classes from
Jow to high income (from left to right in Fig. 791), put classes 1 to 6 in one strat-
um, 7 to 9 in another, and 10 in a third by itself. This particular method of
stratification is not mentioned by Hansen, Hurwitz and Madow, nor by Dal-
enius and Gurney, who also discuss this same example.® In this small problem

Fic. 791. Atlanta families by income in 1933.
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it is quite feasible to find the solution by hand computation. It is intuitively
obvious, and it can be proved, that when the ten original classes are ordered
according to income (¢<j when a;<a;), the only partitions that need be
considered are contiguous partitions, defined for a set of completely ordered
elements as a partition that consists entirely of subsets satisfying the following
condition: if elements 3, 7, and k have the order ¢ <j <k, and if elements 7and k
are assigned to the same subset, then element j must also be assigned to that
same subset.® To find the optimal grouping it is therefore sufficient to compute
the D values for each of the 36 possible contiguous partitions of ten elements
into 3 groups, and then select one with minimum D.?

s See [8] and [4], pp. 144-146. These writers consider some alternative solutions, including that obtained under
conditions of optimal allocation of sampling numbers. For both problems values of the variance function for “nearly
optimal” atratifications do not differ greatly from each other.

s Proof that a least squares partition is always contiguocus is given in the Appendix.

? The number 36 is obtained from the formuls in the next paragraph. The solution to this problem was actually
obtained by an automatic computation to be mentioned in Bection 4 below, and checked by hand computation.
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The general unrestricted problem of K elements into @ groups can, by the
same reasoning, be reduced to a consideration of (§-!) contiguous partitions.?

3. THE RESTRICTED PROBLEM

In the preceding example the investigator, in solving the grouping problem,
was at liberty to take the preliminary step of ordering the ten original classes
by income level, and then seek a contiguous partition of these ten elements so
ordered that minimized the squared distance. Assume for the moment, how-
ever, that it was desired to “respect” some a prior: ordering of these elements
which might be different than the income order. In other words, while still
seeking a minimal squared distance, a solution would be considered admissible
only if it were a contiguous partition of the elements ordered in the a prior:
manner. For example, suppose that the ten original elements were families
living on the same street in a known order of location, and that it is still desired
to create three groups of families with maximum homogeneity measured in
terms of income, but that it is also desired that these groups all be contiguous
in terms of location. This latter condition of the problem may be regarded as
a side condition or restriction imposed on the minimization of D. It is obvious
that this problem is different from the old one; it is possible that the solution
to it may not attain as low a D as the solution to the old one.

Other types of side conditions may be imagined. It may be required that the
solution involve only a partial ordering of the clements with respect to some
criterion, as contrasted with a complete ordering. The given elements could be
associated with points in some space of more than onc dimension, apart from
the values of the a;, and mathematical restrictions could be imposed on the
coordinates of these points.? Certain partitions of the clements may be barred
explicitly, irrespective of any concept of ordering or spatial location. The
grouping problem defined in the second paragraph of this paper will be called a
resiricted problem if any a priori restrictions whatever are placed on the set of
partitions of the K elements into G subsets that are regarded as admissible for
a solution (other than the requirement that the subsets must be mutually ex-
clusive and exhaustive).

Most practical problems will be of the restricted type, since the investigator
will almost always wish to inject prior knowledge, or factors of convenience into
the conditions of the grouping. In fact, the class of restricted problems is so
large that a general approach seems extremely difficult if not impossible. Even a
definition of the major categories of restrictions that seem to be significant for
practical applications is beyond the scope of this paper. It will suffice to present
a larger numerical example that illustrates the solution of a problem having the
simple type of restriction first mentioned: a complete a prior: ordering of the
elements that is different than the numerical order of the a;.

In the discussion of time series in their textbook Wallis and Roberts [11]

¥ A contiguous partition of K completely ordered elements into G subsets may be represented by G —~1 pointe
of division lying in any of the K —1 intervals between adjacent elements, imagined to lie on a line in the specified
order. The number of possible contiguous partitions will therefore equal the number of ways of choosing the division
points, which is the number of combinations of K —1 different things taken G —1 at a time.

* The notion of “property spaca” is applicable to such a scheme. See [1]. The numerical example in [6] includes
certain restrictions on the X elements in a three dimensional property apace.
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present an example of the change of lake levels over a time span of 96 years.
Their graph, reproduced in Fig. 793, suggests certain epochs when the lake level
was high and others when it was lower, although no obvious regularity or
perjodicity is apparent. Their analysis of the phenomenon is largely in terms
of runs and moving averages. Suppose that it were desired to define G epochs
such that the variation of lake level within epochs, as defined by squared dis-
tance D, is minimized. It is of course required that each epoch comprise only

-

consecutive years in time: this is the @ priors ordering. Then a restricted prob-

Fic. 793. Lake Michigan-Huron highest monthly mean level, 1860-19535.
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lem of the type formulated above results, with all weights w; equal to 1. The
solution must be a contiguous partition in terms of the ordering in time—not
necessarily the ordering according to lake level.

The solution to the problem for G ranging from 1 to 10 is given in Table 794.
This solution is provided by an automatic computer program to be mentioned
in the next section. Alternative values for G are listed in the first column. The
minimized values of D are listed in the second column. Each row of the tri-
angular array headed “P?” identifies an optimal partition that yields a solution
to the problem for the @ value of that row, giving the minimized D value of that
row. The optimal partition is identified by the order number of the highest-
order element of each subset, except the last (highest), which is always 96. For
example, for G=3 the three epochs are: years 1 to 30, years 31 to 61, and years
62 to 96. For G=1 the solution is of course trivial; the relevant partition is
simply the original set, and the D value is the sum of squared deviations from



794 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1058

the general mean. It should also be remarked that this program does not yield
multiple solutions when they exist. The program is discussed further below,

TABLE 794

AUTOMATIC COMPUTER SOLUTION TO LAKE MICHIGAN-HURON
PROBLEM

G D P

1 16614

2 8673 31

3 7400 30 61

4 4969 30 63 83

5 4463 30 63 71 82

6 35680 30 63 68 71 82

7 3080 30 63 68 71 82 91

8 2857 23 29 63 68 71 82 4|

9 2559 3 23 29 63 68 71 82 91

10 2359 3 23 29 63 68 71 78 82 01

4, METHODS OF SOLUTION

For small unrestricted problems—say, of the order of K £20, G £5—it is
feasible to obtain the solution by complete enumeration of all possible con-
tiguous partitions by hand computation of D, and selection of a partition hav-
ing minimal D. Some restricted problems of the same order will yield to the
same treatment. For the restricted problem the number of admissible partitions
for which D values must be computed may be less than for an unrestricted prob-
lem of the same size, but the task of applying the restrictions to obtain admis-
sible partitions consumes additional time.

For some unrestricted problems where K is large but @ still small it will be
possible to obtain the solution or a near-solution by visual inspection of the
frequency distribution of the a;, ordered according to their magnitudes. Divi-
sions between groups may be placed where the data are sparse or the weights of
small magnitude. This principle cannot be so readily applied when the number
of such regions of sparse data does not correspond with the number of divisions
to be made. When the frequency distribution of the a; can be represented or
closely approximated by a continuous function of a fairly simple form—say
by one that is not multi-modal-the method of Dalenius [3], [5] can be ap-
plied.!® .

For the general problem with arbitrary distributions of the a; and with larger
K or G, when the special devices noted above are not applicable, a combina-

10 This method is based on the principle that for a continucus frequency distribution a necessary condition for
minimum I is equidistance between any point of division between two adjacent subsets and the two means of the
subsets. Dalenius outlines &n iterative methed for attaining this condition from an initial trial division. It has not
yet been shown, however, for what class of frequency distributions this necessary condition is also sufficient; and
examples can be found for which the condition is not sufficient, even if the usual conditions on the derivatives for
a minimum I are also assumed. For example, if the given frequency distribution has extreme tri-modality, the D
function for a division into two groups may have two local minima, either one of which may be approached by
Dalenius’ iterative procedure, and so the minimum mintmorum may have to be ascertained by further examination.
Dalenius has acknowledged this fact (5, p. 185].
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torial approach seems indicated.” In principle, since the number of possible
partitions of K elements into @ subsets is finite, it would still be possible to find
the solution by consideration of each partition and selection of the one (or
those) having minimum D. Unless this approach is modified, however, the
number of combinations becomes so large (as indicated by the formula proved
:n Footnote 10) that consideration of all possibilities becomes impractical, even
for the fastest digital computers now in existence. For example, the number of
contiguous partitions for a problem of the size of the Lake Michigan-Huron
problem, where K=96, G=10, is slightly over one trillion. A high speed
Princeton-type computer, computing D values at the rate of 10 milliseconds
per partition, and working 24 hours a day, would require more than 280 years
to compare these partitions one by one.

Because of the additive character of the squared distance function, however,
it is possible to reduce the computations very substantially by the use of sub-
optimization procedures. Such procedures are implied by the following lemma.

Suboptimization Lemma: If A1 A, denotes a partition of set A into two
disjoint subsets 4, and A., if P,* denotes a least squares partition of 4,
into G, subsets and if P,* denotes a least squares partition of 4. into G
subsets; then, of the class of subpartitions of 4,:4, employing G, subsets
over A, and G, subsets over A, a least squares subpartition'? is P,*: P,*.

In other words, once a least squares partition over set A, has been found, this
work need not be done over again when testing for various partitions over 4.,
providing that suitable records are kept. It is apparcnt that application of this
lemma makes it possible to avoid separate consideration of many possible
partitions of the entire set of elements. The extent of the saving of time is in-
dicated by the fact that when the lemma was applied, the solution of the Lake
Michigan-Huron problem for all @ from 1 to 10 was actually obtained in 3
minutes.

The lemma will also hold if “least squares partition” is found under side con-
ditions on admissible partitions, and hence is applicable to restricted problems.

A program for the “Illiac” automatic digital computer at the University of
Illinois has been written and checked by the author for solving the unrestricted
grouping problem, or the restricted problem when the elements are com-

11 Tt has been pointed out to the writer by George B. Dantzig in correspondence that the unrestricted grouping
problem can be formulated as a non-linear programming problem by the use of special variables that assign the ele-
ments to groups. The uscfulness of this paraliel is limited, however, by the non-availability of computational algori-
thms for the type of programming problem where & strictly concave obj ective function is to be minimized on a convex
set. Allowing for fractional assignment, let za; denote the fractional part of g; that is assigned togroup h(h =1 -+ * G,
i=1+++K) setdn= =X | zhiwiai/ =K hiwi, S= b2 K | zpiwi(as —an)?, and consider the problem of minimizing
S subject to the constraints za; =0 and 20, zas=1. Withgiven ¢’s and w's, S igstrictly concavein the GK dimensional
space of the xn;, the constraint set is a convex polyhedron in this same space, and minimum S is attained only at
extreme points of this constaint set. An extreme point corresponds with & matrix [z):] having a single unit element
in each column, all other elements being zero (zx; being unity when a; is “completely” assigned to group h, and zero
when a; is not assigned to group k). Then the problem is precisely equivalent to the grouping problem of this paper,
dr, becomes a group mean, S becomes equivalent to our D, and for a solution no fractional assignment is possible.
Moreover, the attainment of a local minimum, in the sense that D cannot be lowered by changing the assignment
of any single a;, does not guarantee that the absolute minimum has been attained. All this emphasizes that the
problem is essentiallv a combinatorial one.

1t Proof; Let P1 and P; denote partitions of 4, and Aj into @1 and Gi subsets respectively. Let D1, Da, Dis,
Di*, Ds*, Dis* denote the squared distances associated with partitions Py, Py, P1 i Py, P, Py, P : Pe* respectively.
From the definition of least squares partition D1*$ D1 and De* SD:. From the definition of D in equation (1)
Dig* = D* 4+ D#* and D1z =D1+Ds. Hence Dis* < D1, and so P¥: Ps* is a least squares partition.
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pletely ordered a priori,® with capacity K =200, G=10. The program solveg
the problem to the extent of identifying one optimal partition and its asso-
ciated squared distance for @=1,2, - - - , G,where G is specified as the maxi.
mum number of subsets to be considered, and cannot exceed 10. Machine
running time for the largest possible problem is approximately 14 minutes,
including input and output.

Input of the data in the specified order is made on standard teletype tape,
If an unrestricted problem is to be solved, then the w; and the a; must be put
into the computer in order according to the numerical values of the a;. The
basic method of solution is to have the “Illiac” systematically identify and
compute D values for all partitions that are relevant after consideration of con-
tiguity and application of the suboptimization lemma. In applying the lemmg,
to the problem of G subsets, systematic use is made of certain results obtained
and recorded while working the problem of G—1 subsets. The solution to a
problem appears in the form of Table 794 and has G rows. In fact Table 794
is a precise reproduction of the output of a particular problem as it emerged
from the page printer, with the exception that some non-significant decimals
of the printed D values have been omitted.

The computational program described has at least three limitations; the
magnitude of K and @ it will accommodate is still quite limited, and even with
modifications to handle further increases in K and G, computation time will
press on reasonable limits; the program will not identify multiple solutions or -
near-solutions; and it will not handle restricted problems other than the special
case of complete one-dimensional ordering. It is to be hoped that future prog-
ress will overcome these shortcomings.

5. GENERALIZATION

Some ways of generalizing the grouping problem as formulated in this paper
will be briefly indicated. A stochastic approach to the problem is presented in
[6], as well as a rationale for dropping the assumption of fixed G, making the
selection of G a part of the decision, which depends on the value of more de-
tailed information as compared with the extra “cost of detail.” Even without
such an explicit theory of cost, knowledge of the change in D resulting from
change in G (see, for example the second column of Table 794) may assist the
investigator in making a decision on what @ he wants to use when he is initially
uncertain. The “Illiac” program was designed to provide this information.

While mention was made in Section 3 of the possibility of specifying a prop-
erty space in more than one dimension, the idea of a, single dimension for meas-
uring squared distance D was retained. It would of course be most desirable to
develop, both theoretically and computationally, a distance criterion that is
defined in more than one dimension. An example of the need for such a formu-
lation is shown in a multivariate stratification problem encountered in a sample

¥ Instruction in programming and a key suggestion that made the writing of this program possible was
given the author by D. B. Gillies of the Department of Mathematics of the University of Illinois. Invaluable aid
in certain aspects of programming and debugging was given by Kern Dickman, Computer Consultant at the Uni-
versity of Illinois, A copy of the instruction tape entitled *Optimal Partition of Discrete Points” is aveilable in the
Office of the Computer Consuitant, and salso in the hands of the author.
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survey by Hagood and Bernert [7]. Of course involved in any such approach
is a relevant system of weighting the different dimensions to reflect their rela-
tive importance in determining distance.

The one-dimensional approach of this paper may be used to provide an
approximate solution to a multi-dimensional grouping problem. As a pre-
liminary step the data may be reduced to single measures on each element by
extracting the first principal component, or by other methods of factor analysis.
Such procedures are now well known and routinized on many types of comput-
ing machines. Then the computational methods suggested above may be
applied to group the elements into the desired number of groups. The goodness
of this approximation will, of course, depend on the degree of dominance of the
first principal component in the multi-dimensional scatter.

APPENDIX: PROOF THAT A LEAST SQUARES PARTITION IS CONTIGUOUS

Consider a non-contiguous partition as defined in the text. Let elements ¢
and k belong to a subset having mean d., while j belongs to a different subset
having mean d;, and where a;<a; <ar. Then, whatever be the values of d. and
d;, at least one of the following three statements is true:

|a,~—-d,-l Zlaf—dikl > 0, (1)
|a.'—d,-k[ > la.——-d,-| > 0, (2)
| ax — G| > |ax — | > 0. (3)

In other words, of the three distinct points, a,, a;, and a., there exists one whose
distance from the mean of its own subset is equal to or greater than its distance
from the mean of another subset, both distances being positive. Relabelling
such a point as “a,” its own subset A with mean 4, and the “foreign” subset
B with mean b, we have

la—a| > |a—-58] >o0. (4)

From definition (1) of the text the squared distance associated with the given
partition may be written

K
D = Z w,-a,-2 - WA£i2 - WBBZ —_ R, (5)
=]
where Wa= D ;a4 wy, Wg= D s wi, and R denotes a weighted sum of squared
means of subsets other than 4 and B.

Consider the new partition formed by transferring point a from subset 4
to subset B. Let A’ with mean @’ and B’ with mean ¥ denote the new subsets
after the transfer. Since from (4) point a was distinct from the mean a, set 4
contained at least two points; hence both A’ and B’ contain at least one point,
and the new partition has the same number of subsets as the old. The new
means @' and &’ can be determined from the relationships

(W4 — w)d’ = Wya — wa, (6)
(Ws + w)b’ = Wsb + wa, ()]



798 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1gz5

where w is the weight of point a. The squared distance associated with the new
partition is

K
D' =3 wa?— (Wa— wa?— (Ws + w)b? — R. @®)

=]

By subtracting (8) from (5), eliminating ¢’ and 4’ by means of (6) and (7),
and simplifying, it follows that

W4 Wg
D—D’=w[m(a—d)zﬂm(a—5)2]. (9)

From (4) and from the fact that all of the weights are positive with W4 >w,
the right-hand side of (9) is found to be positive, and hence D> D’. Hence any
non-contiguous partition can always be altered to give another partition with
the same number of subsets and with smaller squared distance. Hence a least
squares partition must be a contiguous partition.
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