The Meaning of Spatial Thinking

Michael F. Goodchild
University of California
Santa Barbara
Outline

- Spatial cognition
- Examples
- GIS representations
- Empirical laws of geographic information
- Basic concepts
- Implications for teaching
Spatial thinking

- Spatial cognition
 - how we think about the world around us
- Spatial reasoning
 - how we come to conclusions
- Knowledge discovery
 - space in support of science
Spatial cognition

- Fundamental ideas about how spatial skills develop
 - early childhood, Piaget
 - objects
 - object permanence
 - containment
 - Ontario is in Canada
Wayfinding skills

- Landmark knowledge
 - a list of places
 - no spatial relationships
 • no adjacency
 • "if this is Tuesday it must be Belgium"
 - no spatial context
 • "how long is this flight?"
 - no intervening places
<table>
<thead>
<tr>
<th>Tract</th>
<th>Pop</th>
<th>Location</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3786</td>
<td>x,y</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2966</td>
<td>x,y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5001</td>
<td>x,y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4983</td>
<td>x,y</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4130</td>
<td>x,y</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3229</td>
<td>x,y</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4086</td>
<td>x,y</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3979</td>
<td>x,y</td>
<td></td>
</tr>
</tbody>
</table>
Route knowledge

- Sequences of intervening places
 - no ability to short-cut
 - no directions, distances
 - context along the route but not off
Survey knowledge

- Full two-dimensional representation
 - distances
 - orientations
 - shortcuts
 - context
 - vertical and horizontal
The Snow Map of Cholera Incidence in the Area of Broad Street, London, in 1854.
The contaminated water pump is located at the center of the map, just to the right of the D in BROAD STREET.
Naïve geography

- Distortion of survey knowledge
 - to fit simple models
- The US as a rectangle
 - E and W coasts run N-S
 - Miami is S of NY
 - California is a rectangle
 - Santa Barbara is N of LA
 - Santa Barbara is W of Lake Tahoe
 - Las Vegas is E of San Diego
 - Canadian border is E-W
 - Detroit is S of Windsor
Geographic information

- Information linking a place x to a set of properties z (at some time t)
 - composed of atoms of the form $<x,t,z>$
 - mapping tradition is not sympathetic to t
 - atomic form only seen rarely

- Analysis and interpretation of geographic information
 - affected by changes in x
Standard coding schemes

- Music: MIDI, MP3
- Images: JPEG, TIFF, GIF
- FAX: CCITT
- Text: ASCII
- Planet Earth:
 - how to express knowledge about the planet's surface in 0s and 1s
map soil2 with 40 classes
Coverage model

- Polygons
- Common boundaries
 - arcs
 - coded as polylines
 - pointers to leftpoly, rightpoly, fromnode, tonode
 - topology
A data set is a collection of all points, all lines, or all areas
- lines as polylines
- areas as polygons

The features in a data set have associated attributes
- stored in a table
Real world

GIS data model

Industry-standard data model
The GIS data types

- Discrete geographic features
 - points, lines, areas
 - the contents of maps
 - with associated attributes
 - countable
 - conceived as tables with associated feature geometry

- ESRI shapefiles
Scottish Munros

1. Ben Hope
2. Ben Klibreck
3. Ben More Assint
4. An Teallach
5. Seana Bhraigh
6. Ben Wyvis
7. Slieoch
8. Sgorr Ruadh
9. Moruisg
10. Sgurr na Ruaidhe
11. Bia Bheinn
12. Sgurr na Lapaich
13. Ben Attow
14. The Saddle
15. Creag a’ Mhaim
16. Ladhar Bheinn
17. Coireachan
18. Ben Nevis
20. Ben Starav
21. Braeriach
22. Ben Avon
23. Meall Chuaich
24. Mt Keen
25. Beinn Dearg
26. Glas Maol
27. Driesh
28. Schiehallion
29. Ben Chonzie
30. Ben Lawers
31. Ben Challum
32. Ben Lomond
Fields

- Geography as a collection of continuous variables
 - measured on nominal, ordinal, interval, ratio scales
 - vector fields of direction and magnitude
 - exactly one value per point
 - $z=f(x)$
 - population density, land ownership, zoning

- ESRI's coverage data model
What can we say about geographic information?

- Does it have general properties?
 - What's special about spatial?
- Design principles for GIS
Tobler’s First Law

“All things are related, but nearby things are more related than distant things”

– implies process as much as form

– “nearby things are more similar than distant things”
Nearby things are less similar than distant things"

- negative spatial autocorrelation
- possible at certain scales
 - the checkerboard
 - retailing
- but negative a/c at one scale requires positive a/c at other scales
- smoothing processes dominate sharpening processes
Formalization

- Geostatistics
 - variogram, covariogram
 - measuring how similarity decreases with distance
 - parameters vary by phenomenon
 - does this make TFL less of a law?
Utility

- **Representation**
 - GI is reducible to statements of the form \(<x,z>\)
 - the atomic form of GI is unmanageable, encountered only in point samples
 - all other GI data models assume TFL

- **Spatial interpolation**
 - IDW and Kriging implement TFL
If TFL weren’t true

- GIS would be impossible
 - a point sample is useful only with interpolation
- Life would be impossible
Expanding the horizons

- Other spaces
 - are there spaces for which TFL is not true?
 - digits of π
 - genome
- Other laws of GIScience
Candidate laws

- All important places are at the corners of four map sheets
 - “People think closer things are more similar”
A second (first) law

- TFL describes a second-order effect
 - properties of places taken two at a time
 - a law of spatial dependence
 - is there a law of places taken one at a time?

- Spatial heterogeneity
 - non-stationarity
 - uncontrolled variance
Corollaries of the second law

- There is no average place on the Earth’s surface
- Sampling is problematic
 - one must visit or map all of it to understand its full complexity
- Results depend explicitly on the bounds of the study
- The Noah effect
 - there is a finite probability of an event of any magnitude
 - to observe an event of a given magnitude it is simply necessary to wait long enough
The Eden effect
- El Dorado
- to find a feature of any magnitude it is sufficient to look far enough
 - but unlike time, the Earth’s surface is limited

The Pareto distribution or rank-size rule
- plot log rank against log size
- a model of the extreme upper tail of distributions
- fits well to the world’s largest:
 - cities by population
 - lakes by area
- but not mountains by elevation
Practical implications of the second law

- A state is not a sample of the nation
 - a country is not a sample of the world
- Classification schemes will differ when devised by local jurisdictions
- Figures of the Earth will differ when devised by local surveying agencies
- Global standards will always compete with local standards
Implications for analysis

- Strong argument for place-based analysis, local statistics, geographically weighted regression
 - a middle ground in the nomothetic/idiographic debate
Possible corollary of the heterogeneity law

- For every conceivable pattern in two (three) dimensions there exists an instance on the Earth's surface
 - for every GIS algorithm/indexing scheme/data model there exists a data set for which that algorithm/indexing scheme/data model is optimal
 - "There are more things in Heaven and earth, Horatio, than are dealt with in your philosophy"
A fundamental property of any geographic representation
- defining what is included, what is left out
 - 1:24,000
 - 1:100,000
 - 1:2,000,000

Two characteristics:
- spatial resolution
- spatial extent

Conflict over "large" and "small"
Many properties are scale-dependent
- slope
- land cover class
- soil class
- travel behavior
 - daily
 - annual
 - lifetime

What does scale mean for digital data?
Types of attributes

- Nominal
- Ordinal
- Interval, ratio
- Cyclic
- Vector
- Scaling properties
 - spatially intensive
 - spatially extensive
If you want to know approximately how many people each census tract has, map total population.

Census tracts by total population.

If you want to know where most of the people are concentrated, map population density.

Census tracts by people per square mile.
Spatial support

- The set of features used to characterize spatial distribution
 - sample points
 - reporting zones

- Spatial interpolation
 - guessing values at unmeasured/unobserved locations
 - areal interpolation
4 source zones

1 target zone

$\text{Pop}_{\text{TARG}} = 0.10 \text{ Pop}_A + 0.15 \text{ Pop}_B + 0.05 \text{ Pop}_C + 0.50 \text{ Pop}_D$
Reasoning across support and scale

- The ecological fallacy
 - reasoning from aggregate to individual
 - Gary King
- The Modifiable Areal Unit Problem
 - reasoning across alternative support
 - an artifact of incomplete problem conceptualization
Summary

- Spatial thinking is powerful
 - providing context
 - support for knowledge discovery
- Geographic information is a unique information type
- Its representation in digital form involves many options
 - the GIS data models
- It has general properties
 - that are useful in system design
GIS education: past, present, future

- Thirty years of evolution
 - my own teaching
- Continuing issues
- A plan for the future
GIS education in 1974

- Fragmented
 - cartography, remote sensing, geographical analysis, planning
 - Tomlinson’s conferences (1970, 1972)
 - Harvard workshops (1967)
 - nobody talked about teaching

- Government systems
 - Canada Geographic Information System
 - Census Bureau and DIME
University labs in 1974

- Harvard Laboratory for Computer Graphics and Spatial Analysis
 - SYMAP, CALFORM, SYMVU
 - William Warntz and theoretical geography

- Experimental Cartography Unit in London
What to teach?

- No software
 - home-made
 - not integrated
 - Harvard lab
 - no COTS
- No principles
- No applications
- No text
Geography 300

- University of Western Ontario, 1975
 - Ross Newkirk

Texts:
- John Davis and Michael McCullagh, *Display and Analysis of Spatial Data* (1975)

Software:
- PlusX, Surface II, SYMAP, CALFORM
Principles circa 1975

- Algorithms
 - point in polygon
- Data structures
 - arcs and nodes
- Accuracy
- Analysis
 - overlay
 - location-allocation
 - political districting
 - spatial interpolation
 - corridor location
Significant milestones

- Research community
 - Topological data structures conference, Boston, 1977
- COTS software
 - 1982
- Peter Burrough’s text *Principles of Geographical Information Systems*
 - 1985
- NCGIA Core Curriculum
 - 1989
 - http://www.ncgia.ucsb.edu, Education, Core Curricula
The three-course sequence (UCSB)

- **176A: Introduction to GIS**
 - Keith Clarke, *Getting Started with GIS*

- **176B: Technical Issues in GIS**
 - Mike Goodchild, *Geographic Information Systems and Science*

- **176C: Application Issues in GIS**
 - Student projects
GIS education today

- Textbooks
- Courses and programs in thousands of institutions
- Distance learning
 - Virtual Campus, UNIGIS, Penn State, University of London
 - Intergraph's Online Education Training Program
 - http://imgs.intergraph.com/training/online.asp
- University Consortium for Geographic Information Science
- Alternative COTS solutions
Consensus on the principles

- Representation
- Data models
- Data structures
- Algorithms
- Visualization
- Analysis
- Uncertainty
- Metadata
- Data sharing

- Projections and coordinate systems
- Geodesy
- GIS design and implementation
- Data management
- Spatial decision support
- Dynamic modeling
- User interfaces
Teaching more of...

- Database design and management
 - relational
 - object-oriented
 - CASE tools

- Internet services
 - metadata
 - GI Services
 - location-based services, field GIS

- Social context
 - privacy, surveillance
 - costs and benefits
Teaching less of...

- Algorithms
- Analysis
- Programming
- Operating systems
The technology of teaching

- 1975: Blackboard, chalk, handouts
- 1996: WWW notes and overheads
- 1999: Online HTML
 - no failures in 6 years
- 2002: Online HTML and GIS demos
 - 2 failures in 3 years
Online

- http://www.geog.ucsb.edu, Faculty, Goodchild
- Linked lab exercises
Continuing issues

- Balance of pedagogic style
 - lecture or hands-on lab?
 - adaptation to individual learning style

- Balance of training and education
 - education in the persistent principles
 - training in today’s technology

- Balance of computer science and geography
 - focus on computers
 - focus on the real world and its digital representation
Continuing issues (2)

- GIS transparent or black box?
 - doing it by hand first
 - understanding what happens inside
 - educating the skeptical user
 - demanding better from the vendor
 - the rules of scientific reporting

- Education for the workplace or for research?
Where next?

- From geographic to spatial
 - geographic, spatial, geospatial
 - geographic data, spatial analysis

- The importance of spatial thinking
 - in all sciences
 - in life
 - a picture is worth a thousand words
 - spatial information is more easily comprehended
Generalizing to spatial

- Astronomy
 - information about the cosmos
- Bioinformatics
 - the human genome
 - “BLACKSBURG, VA -- The merits of linking two fields seemingly as disparate as geographic information systems (GIS) and bioinformatics might not seem obvious, but Virginia Tech's recent symposium linking the two and its roster of renowned participants from both fields raised expectations as well as eyebrows in national technology circles.” (June, 2001)
From geography to STEM

- Traditional support for geographic research
 - expanded to resource management, geology, criminology, history, ecology, ...

- What about all of science, technology, engineering, math (STEM) education?
GIS as key to STEM education

- Student-centered learning
- Motivation
 a pathway to teaching
- Spatial thinking
 visualization and communication important in all sciences
- Principles of the scientific method
- Workplace skills
- Integration of technology in science and math education
- GIS for good citizenship
Vertical integration

- Upper division undergraduate
- Lower division, 2-year college
- K-12
- Non-traditional learners
- What to teach when?
 - tied development of conceptual and cognitive skills
- Current National Research Council study
 Support for Thinking Spatially: GisScience in the K-12 Curriculum
The proposed study will review knowledge about the teaching and learning of geographic information systems (GIS) and geographic information science (GIScience) in K-12 education. It will address two questions: (1) how can current versions of GIS and GIScience be incorporated into standards-based instruction in knowledge domains across the curriculum, and (2) how can cognitive developmental and educational theory be used to design age-appropriate versions of GIS and age-appropriate GIScience curricula; (3) what are the nature and character of spatial thinking: what is it, why do we need to know about it, and what do we need to know about it; and (4) how does the capacity for spatial thinking develop and how might it be fostered systematically by education and training? The review will develop application guidelines and research and development strategies. It will provide short-term guidance to incorporate GIS and GIScience into American schools and long-term research strategies to improve the design of GIS and reshape the teaching and learning of GIS and GIScience.

www.nas.edu, Earth Science, Board on Earth Science and Resources, Current Studies
A GIS for thinking spatially

- Capacity to:
 - Spatialize data sets
 - Visualize
 - Perform transformations and analysis
Design criteria

- Supportive of enquiry process
- Educationally appropriate
- Accessible to all learners
- Quick to learn and use
- Learning across disciplines
- Range of contexts
- Customizable
- Robust and realistic
Child of 10 or concert pianist?

- Conventions that complicate
 - scale
 - projections
 - language
 - TLAs
 - DEM, DOQ, DLG, DRG, DCW, DTM…
GIS adoption

- Approaching 100% in universities and colleges
- Early adopters in K-12
 - teachers, schools, districts
- Moving GIS beyond the early adopters
 - disadvantaged areas
 - learners with disabilities
 - gender issues
Infrastructure for GIS educators

- Physical meetings
 - national or regional
- Web resources
 - software, data, applications
 - online expertise
- P2P resource sharing
- Classroom internships for college GIS students
 - NSF’s GK-12 program
- GIS in credential programs
 - Schools of Education
Conclusion

- 30 years of progress
- A vision for the next level