CSISS WORKSHOP

Introduction to Spatial Pattern Analysis in a GIS Environment

Geostatistics: The Semivariogram and Kriging

Arthur Getis

Geostatistics

Semivariance and the Semivariogram
(also semivariogram = variogram)

Kriging

Semivariance

- A measure of the degree of spatial dependence between observations of a regionalized variable.
- Formulation

$$\gamma_h = \sum (x_i - x_{i+h})^2 / 2n$$

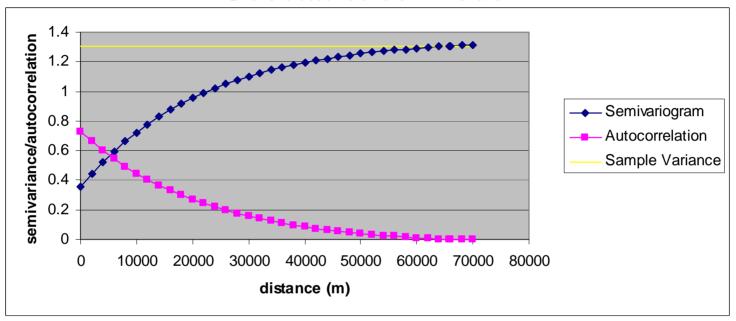
where h is the distance interval between points.

The plot for a number of h's is called the semivariogram.

Intrinsic Stationarity

Variogram analysis cannot proceed without acceptable assumptions, chief of which is *intrinsic stationarity*.

Geostatistics Model



$$\gamma(d) = 0.356 + \left[1 - e^{\frac{-3d}{65700}}\right]$$

$$W_{ij} = 1 - \left(\gamma(d_{ij}) / \sigma^2 \right)$$

Characteristics of Semivariogram

- Range
- Sill
- Nugget
- Autocorrelation
- Variance = Sill

The Geostatistics Models

Assumptions and Definitions

- Intrinsic Stationarity: $2\gamma(d) = \text{Var}[Y(u) Y(v)]$
- The Semivariance: $\gamma(d) = [1/2N] \Sigma \{Y(u) Y(v)\}^2$
- Autocorrelation: $\rho(d) = 1 [\gamma(d)/\sigma^2]$
- The Range: when $\gamma = \sigma^2$
- The Nugget: when $\gamma > 0$ at d = 0

Semivariograms

- OBSERVED
- THEORETICAL

Spherical

Exponential

Linear (with sill)

Gaussian

The Geostatistics Models

Spherical

$$w_{ij} = 1 - \sigma^2 \left(\frac{3d_{ij}}{2d_r} - \frac{d_{ij}^3}{2d_r^3} \right) \qquad d_{ij} \le d_r$$

Gaussian

$$w_{ij} = 1 - \sigma^2 \left(1 - e^{-3d_{ij}^2/d_r^2} \right) \qquad d_{ij} \le d_r$$

Exponential

$$w_{ij} = 1 - \sigma^2 \left(1 - e^{-3d_{ij}/d_r} \right)$$
 $d_{ij} \le d_r$

Kriging

• The Idea of Kriging

Models

Simple (punctual)

Ordinary (punctual)

Universal (punctual)

Block

Cokriging

Others

Simple Kriging

- $Z(x_0) = m + YW^{-1}B$
- where m = assumed mean (known)
- Y =observations in the vicinity of x_0 (-m)
- **W** = correlation semivariance (for all pairs of observations)
- \mathbf{B} = correlation semivariance (for all pairs between observations and \mathbf{x}_0)

Ordinary Kriging

• $Z(x_0) = YW^{-1}B$

Universal Kriging

• Drift

Block Kriging

Areas or volumes

Cokriging

• More than one variable used to estimate value at a particular location.