CSISS WORKSHOP

Introduction to Spatial Pattern Analysis in a GIS Environment

Measures of Spatial Pattern: Global and Local Statistics

Arthur Getis

Pattern Statistics

• GLOBAL

I, c, K, G, Knox, Mantel, Tango, Grimson, Cuzick and Edwards, Kernels, Scan

• LOCAL

 $I_i, c_i, G_i, G_i^*, GWR, O_i$

Global Statistics

- Nearest Neighbor
- K-Function
- Global Autocorrelation Statistics Moran's I Geary's c Semivariance

Matrix Representation: WY

- W
- The Spatial Weights Matrix
- The Spatial Association of All Sites to All Other Sites
- d, d², 1/0, 1/d

• Y

- The Attribute Association Matrix
- The Association of the Attributes at Each Site to the Attributes at All Other Sites

• +,-,/,X

The Spatial Weights Matrix

W is the formal expression of the spatial association between objects

(it is the pair-wise geometry of objects being studied).

Typical W

- Spatially contiguous neighbors (rook, queen: one/zero)
- Inverse distances raised to a power: $(1/d, 1/d^2, 1/d^5)$
- Geostatistics functions (spherical, gaussian, exponential)
- Lengths of shared borders (perimeters)
- All centroids within distance *d*
- nth nearest neighbor distance
- Links (number of)

The Attribute Matrix

Y

The variable under study. One variable at a time. Interval scale (other scales under special conditions).

For example, residuals from regression; a socio-economic variable (number of crimes, household income, number of artifacts, etc.)

Attribute Relationships

Y

• Types of Relationships

Additive association (clustering): $(Y_i + Y_j)$ Multiplicative association (product): (Y_iY_j) Covariation (correlation): $(Y_i - Ybar)(Y_j - Ybar)$ Differences (homogeneity/heterogeneity): $(Y_i - Y_j)$ Inverse (relativity): (Y_i/Y_j)

• All Relationships Subject to Mathematical Manipulation (power, logs, abs, etc.)

WY: Covariance

- Set W to preferred spatial weights matrix
- (rooks, queens, distance decline, etc.)
- Set **Y** to $(x_i \mu) (x_j \mu)$
- Set scale to $n/W \Sigma (x_i \mu)^2$
- I = $n \Sigma \Sigma W_{ij} (x_i \mu) (x_j \mu) / W \Sigma (x_i \mu)^2$ where W is sum of all W_{ij} and i Jbj

This is Morans's I.

WY: Additive

- Set W to 1/0 spatial weights matrix
- 1 within *d*; 0 outside of *d*
- Set **Y** to $(x_i + x_j)$
- Set scale to $\Sigma W_{ij}(d) / \Sigma(x_i)$
- $G(d) = \Sigma W_{ij}(d) (x_i + x_j) / \Sigma (x_i)$ and i $\mathcal{P}_j j$

This is Getis and Ord's G.

WY: Difference

- Set W to preferred spatial weights matrix
- Set **Y** to $(x_i x_j)^2$
- Set scale to $(n-1)/2W\Sigma(x_i \mu)^2$
- $c = (n 1) \Sigma \Sigma W_{ij} (x_i y_{ij})^2 / 2W\Sigma(x_i \mu)^2$ where W is sum of all W_{ij} and i $\mathcal{I}_{b} j$ This is Geary's c.

WY: Difference

- Set W to 1/0 weights matrix; 1 within *ah* and 0 otherwise; *a* is an integer; *h* is a constant distance
- Set **Y** to $(x_i x_j)^2$
- Set scale to 1/2
- $\chi(ah) = 1/2 \Sigma \Sigma W_{ij} (x_i x_{j})^2$

This is the semi-variogram.

Local Statistics

- Global Statistics reworked for focussing on *i*
- LISA statistics (Local Indicators of Spatial Association)

Clustering Statistics

Getis and Ord's G_i and G_i^*

The Getis-Ord Approach

 $G_i^*(d) = \left[\sum_j w_{ij}^*(d) x_j\right] / \sum_j x_j$

- Normally distributed
- Tests for statistical significance

The G_i^* Statistic

- The G_i^* statistic is local, that is, it is focused on sites and is normally distributed. It is designed to yield a measure of pattern in standard normal variates.
- Indicates the extent to which a location (site) is surrounded to a distance *d* by a cluster of high or low values.
- The input is a file containing coordinates for each house and, for example, the Y variable. The user specifies maximum search distance and number of increments.
- The output file contains a listing of the $G_i^*(d)$ value for sample point at a specified distance (d).

The Critical Distance

- The G_i^* values are computed around each observation as distance increases.
- When the absolute values fail to rise, the cluster diameter is reached. This is the critical distance d_c .
- Spatial association weakens beyond d_c .

Example Ranges

